您现在的位置是:主页 > news > 洛可可设计/国外seo比较好的博客网站
洛可可设计/国外seo比较好的博客网站
admin2025/5/7 3:52:09【news】
简介洛可可设计,国外seo比较好的博客网站,购物网站创建,手机网站做安卓客户端数组中最大子数组和前言一、案例1、数组中最大子数组和2、示例二、题解1、暴力法2、利用已知条件总结参考文献前言 暴力解通常不能满足时间复杂度的要求,必须抓住已知条件来寻找低时间复杂度的解题方式。 一、案例 1、数组中最大子数组和 给你一个整数数组 nums &a…
洛可可设计,国外seo比较好的博客网站,购物网站创建,手机网站做安卓客户端数组中最大子数组和前言一、案例1、数组中最大子数组和2、示例二、题解1、暴力法2、利用已知条件总结参考文献前言 暴力解通常不能满足时间复杂度的要求,必须抓住已知条件来寻找低时间复杂度的解题方式。 一、案例
1、数组中最大子数组和 给你一个整数数组 nums &a…
数组中最大子数组和
- 前言
- 一、案例
- 1、数组中最大子数组和
- 2、示例
- 二、题解
- 1、暴力法
- 2、利用已知条件
- 总结
- 参考文献
前言
暴力解通常不能满足时间复杂度的要求,必须抓住已知条件来寻找低时间复杂度的解题方式。
一、案例
1、数组中最大子数组和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
2、示例
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
二、题解
1、暴力法
直接以O(n2)的复杂度寻找最大和。
//最大子数组和
public class MaxSubArray {public int maxSubArray(int[] nums) {//ON方复杂度来遍历出一个最大值int max = Integer.MIN_VALUE;for (int i = 0; i < nums.length; i++) {int sum = nums[i];if (max < sum) max = sum;for (int j = i + 1; j < nums.length; j++) {sum += nums[j];if (max < sum) max = sum;}}return max;}
2、利用已知条件
连续子数组,有正有负,当左缀和小于等于0是就没有加下去的必要了,相当于把暴力法的第一层for往后面求和大于0的地方提,把暴力法的第二层for中的控制条件往前提到和小于等于0的地方。
//认真找出其中的规律和联系,不要被不严谨的我以为作为指导方针。public int maxSubArray(int[] nums) {//当左缀和小等等于0时,左缀数组继续加下去没有意义,则需要定义新的起点,开始累加,把每向前遍历一步就作为一个终点,记录此时的和是否为最大值。int res = nums[0];int sum = 0;for (int num : nums) {sum += sum > 0 ? num : num - sum;res = res < sum ? sum : res;}return res;}
总结
1)利用已知的条件联系题解的方向做一个时间空间复杂度上的简化。
2)专注思考效率高,认真找出其中的规律和联系,不要被不严谨的我以为(不专注的体现)作为指导方针。
3)实在做不来(在专注思考的前提下),看题解,此时不浪费宝贵的时间;也不要思考完了不上手敲代码,而直接去对题解,此时浪费题源。
参考文献
[1]LeetCode 原题